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Abstract

This paper assesses the contribution of monetary policy to the dynamics of bond real returns. We assume
that the monetary authority controls the short-term nominal interest rate. We then model exogenously the joint
dynamics of the aggregate endowment and the monetary policy variable, and determine bond real returns
endogenously. Market segmentation is introduced by permanently excluding a fraction of households from
financial markets. When markets are segmented, monetary policy has a liquidity effect on the participants’
consumption and marginal utility, on the stochastic discount factor, and on real returns. Data on bond returns
strongly favor the segmented markets model over the full participation model. For maturities up to 2 years,
the segmented markets model is able to replicate the sign and the size of the impulse response of bond returns
to monetary policy shocks, it correctly predicts the sign of their autocorrelation, and it closely matches their
volatility as a function of maturity.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper assesses the contribution of monetary policy to the dynamics of bond real returns.
We assume that the monetary authority controls the short-term nominal interest rate. We then
model exogenously the joint dynamics of the aggregate endowment and the monetary policy
variable, and determine bond real returns endogenously.
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We adopt a heterogenous agents variant of the limited participation framework, the segmented
markets model, previously studied by Alvarez and Atkeson (1996), Alvarez, Lucas, and Weber
(2001), Occhino (2004), and Lahiri, Singh, and Vegh (2007). The central feature is that a set of
households are permanently excluded from financial markets.

In the full participation version of the model, real returns are determined by the marginal utility
of the representative household, and, therefore, by the aggregate consumption and endowment.
Hence, monetary policy affects real returns through its effect on the aggregate endowment.

When markets are segmented, however, monetary policy has an additional liquidity effect.
Changes in the stance of monetary policy affect the distribution of cash balances and con-
sumption expenditures across households. An increase in interest rates induces traders to
hold more bonds, to lower their holdings of cash balances, and to reduce their purchases of
consumption goods. The traders’ marginal utility of consumption rises, lowering the stochas-
tic discount factor, and increasing expected real returns. The smaller the economic weight
of traders in the economy, the larger this liquidity effect of monetary policy on bond real
returns.

We take the full participation and segmented markets models to the data. Three empirical
dimensions are explored: the response of bond returns to nominal interest rate shocks; the auto-
correlation of bond returns; and the term structure of volatility. The evidence strongly favors the
segmented markets model in each case.

The full participation model has incorrect predictions about the impact effect of monetary
policy, with real returns rising after an increase in interest rates. Real returns fall in the segmented
markets model and closely track the impulse responses in the data thereafter.

The segmented markets model also matches the declining positive autocorrelations and increas-
ing volatilities of bond returns as time to maturity increases. The full participation model has
negative autocorrelations and can only match the higher volatilities of longer term bond returns
by overstating short-term bond volatility.

The paper is organized as follows: Section 2 describes the economy and defines the equilibrium;
Section 3 explains the numerical solution method; Section 4 presents and comments on the
empirical results; Section 5 concludes.

2. Model

The model is a cash-in-advance endowment economy, with a large number of households and
a monetary authority. Time is discrete and is indexed by t ≥ 0. There is a single non-durable
consumption good, money, and one-period nominal bonds, which are claims to one unit of money
payable at the end of the period. Households are of two types, traders and non-traders. Let
ω > 0 and ω∗ ≥ 0 be respectively the number of traders and non-traders. We will refer to the case
where ω∗ = 0 and ω∗ > 0, respectively as the full participation model and the segmented markets
model.

Households of the same type are identical in all respects. The crucial difference between the
two types of households is that non-traders spend all their money purchasing consumption goods,
while traders can purchase bonds as well.

Households start each period with cash balances from the previous period. Then, two markets
meet in sequence, a bond market and a goods market.

In the bond market, the monetary authority sells one-period nominal bonds to the traders, at
the bond price qt > 0. The monetary authority announces the bond price, and stands ready to
issue and sell any number of bonds to clear the market at that price. Open market operations are
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then conducted in terms of the short-term nominal interest rate it defined by

qt ≡ 1

1 + it
, (1)

while the bond supply and the money supply are determined endogenously. We assume
that the interest rate is strictly positive, which implies the bond price is strictly less than
one.

After the bond market, all households participate in the goods market. Each trader and each
non-trader, respectively receive constant fractions � > 0 and �∗ > 0 of the exogenous stochas-
tic aggregate endowment Yt > 0, with ω� + ω∗�∗ = 1. The endowment cannot be consumed
directly, and must be sold in exchange of money at the price Pt > 0. Households can only con-
sume goods purchased with money held before the goods market session. Bonds are redeemed
after the goods market closes.

The aggregate endowment Yt and the nominal interest rate it are the only sources of uncertainty
in the economy, and their joint dynamics is exogenously modeled as follows. Let {Ȳt, ı̄t}∞t=0 be
the non-stochastic steady state values of the aggregate endowment and the interest rate, and let
us assume that Ȳt+1/Ȳt = α and ı̄t = i are constant over time. We assume that ẑt ≡ [log(Yt) −
log(Ȳt), log(it) − log(i)] follows the AR(N) process,

ẑt =
N∑

n=1

ẑt−nBn + ηtC, (2)

where Bn and C are 2 × 2 matrices, C is upper triangular, ηt is a 1 × 2 vector of independently
and identically distributed standard Gaussian shocks.

Each trader chooses consumption Ct , bonds Bt , and next-period cash balances At+1 to solve

max{Ct>0,Bt,At+1>0}∞
t=0

E0

[ ∞∑
t=0

βtu(Ct)

]
, (3)

subject to

qtBt + PtCt ≤ At, At+1 = At − qtBt − PtCt + Pt�Yt + Bt, (4)

given the traders’ initial cash balances A0 > 0 in period zero. E0 is the expectation conditional
on information available after ẑ0 has been revealed. The period utility function u(C) is constant
relative risk aversion with relative risk aversion equal to σ > 0, so its derivative is u′(C) ≡ C−σ ,
and the preferences parameters satisfy βα1−σ ∈ (0, 1).

Since the bond price qt is strictly less than one for all t, holding idle cash balances is never
optimal for traders, so the traders’ cash-in-advance constraint always holds with equality. Then,
the two constraints (4) in the problem (3) can be substituted with

qtBt + PtCt = At, At+1 = Pt�Yt + Bt. (5)

Non-traders, by assumption, spend all their initial cash balances purchasing consumption
goods. The behavior of a non-trader is simply described by:

PtC
∗
t = A∗

t , A∗
t+1 = Pt�

∗Yt, (6)

given the non-traders’ initial cash balances A∗
0 > 0 in period zero.
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The economy is described by the traders’ initial assets A0, the non-traders initial assets A∗
0,

the initial exogenous state [ẑ0, . . . , ẑ−N+1], and the law of motion (2) for the exogenous state ẑt .
Histories are made of the sequences of all possible realizations of the shocks ηt . An equilibrium is
a set of contingent sequences {Ct > 0, Bt, At+1 > 0}∞t=0 of consumption demand, bond demand
and cash balances for traders, {C∗

t > 0, A∗
t+1 > 0}∞

t=0 of consumption demand and cash balances
for non-traders, a contingent sequence {Dt}∞t=0 of bonds supplied by the monetary authority, and
a contingent sequence {Pt > 0}∞t=0 of prices such that the traders’ contingent sequence solves the
traders’ optimization problem (3), the non-traders’ contingent sequence satisfies the non-traders’
equations (6), and the bond and goods market equilibrium conditions

ωBt = Dt, ωCt + ω∗C∗
t = Yt. (7)

The money supply is the quantity of cash balances left after the monetary authority auctions
the government debt. The monetary authority faces the budget constraint

Mt = Mt−1 + Dt−1 − qtDt, (8)

where M−1 + D−1 = ωA0 + ω∗A∗
0. This implies past debt Dt−1 must be financed by issuing

new debt Dt and by seigniorage Mt − Mt−1.
Since the traders’ cash-in-advance constraint binds in equilibrium, and since the non-traders’

cash-in-advance constraint binds by assumption, the money supply Mt equals, in equilibrium, the
amount of dollars PtYt spent in the goods market.

The necessary first-order conditions for the traders’ optimization problem are

βtC−σ
t − ν1

t Pt = 0, −qtν
1
t + ν2

t = 0, −ν2
t + Et[ν1

t+1] = 0, (9)

and the transversality condition is

lim
t→∞E0[ν1

t At] = 0, (10)

where ν1
t and ν2

t are the Lagrange multipliers associated with the two constraints (5). From the
first-order conditions, it follows that

βtC−σ
t = ν1

t Pt, qtν
1
t = Et[ν1

t+1]. (11)

The system describing the equilibrium is, then, made of the identity (1), the law of motion (2)
for the exogenous state, the traders’ first-order conditions (11), the traders’ constraints (5), the
non-traders’ constraints (6), and the equilibrium conditions (7).

In this paper, we focus on the predictions of the model about bond real returns. All throughout,
bond real returns are real holding period returns of discount real bonds, which are financial assets
with a fixed real payoff at some fixed maturity date. We assume that all financial assets are in zero
net supply and are traded only by traders. The assumption that the monetary authority issues only
one-period bonds is the same as the one in Lucas (1990) and is standard in monetary economics.1

From these assumptions, it follows that the equilibrium price Qt of a one-period financial asset

1 If multi-period bonds were issued by the government, then the equilibrium would require more state variables and
equilibrium conditions. Indeed, for given exogenous processes of aggregate endowment and the short-term interest rate,
the equilibrium would depend on the entire maturity structure of issued government bonds.
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with nominal payoff 	t+1 and the equilibrium real price Q∗
t of a one-period financial asset with

real payoff 	∗
t+1 are given by

ν1
t Qt = Et[ν1

t+1	t+1], ν1
t Q

∗
t Pt = Et[ν1

t+1	
∗
t+1Pt+1]. (12)

Multi-period financial assets are priced in the same way, recursively.

3. Solution and calibration

3.1. Solution

For convenience, variables are normalized as follows. As in Lucas (1990), nominal variables
are normalized by aggregate cash balances available at the beginning of the period. Let Wt ≡
ωAt + ω∗A∗

t be the initial aggregate cash balances. Then, yt ≡ Yt/Ȳt , νt ≡ ω−σν1
t Wt/β

tȲ1−σ
t ,

ct ≡ ωCt/Ȳt , bt ≡ ωBt/Wt , at ≡ ωAt/Wt , c∗
t ≡ ω∗C∗

t /Ȳt , a∗
t ≡ ω∗A∗

t /Wt , dt ≡ Dt/Wt , γt ≡
Wt+1/Wt , pt ≡ PtȲt/Wt . Also, let us define λ ≡ ω� = 1 − ω∗�∗ the traders’ share of the aggre-
gate endowment. Then, λ = 1 in the full participation model, and λ ∈ (0, 1) in the segmented
markets model.

The system describing the equilibrium can then be written as

qt(1 + it) ≡ 1, (13a)

c−σ
t = νtpt, (13b)

qtγtνt = βα1−σEt[νt+1], (13c)

qtbt + ptct = at, (13d)

γtat+1 = ptλyt + bt, (13e)

ptc
∗
t = a∗

t , (13f)

γta
∗
t+1 = pt(1 − λ)yt, (13g)

bt = dt, (13h)

ct + c∗
t = yt, (13i)

at + a∗
t = 1, (13j)

together with the law of motion (2) for the exogenous state. The transversality condition (10) can
be written as

lim
t→∞E0[βtȲ1−σ

t νtat/ω
1−σ] = lim

t→∞E0[βtα(1−σ)t Ȳ1−σ
0 νtat/ω

1−σ] = 0, (14)

and the asset pricing equations (12) as

γtνtQt = βEt[νt+1	t+1]α1−σ, νtQ
∗
t pt = βEt[νt+1	

∗
t+1pt+1]α−σ. (15)

It is convenient to derive an equivalent system as follows. From the households’ budget
constraints (13e) and (13g), it follows that

γtat+1 + γta
∗
t+1 = ptλyt + bt + pt(1 − λ)yt, qtγt[at+1 + a∗

t+1] = qtptyt + qtbt.
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Then, using the households’ cash-in-advance constraints (13d) and (13f), the bond price (13a),
and the goods market equilibrium condition (13j),

qtγt[at+1 + a∗
t+1] = qtptyt + at − ptct + a∗

t − ptc
∗
t ,

qtγt = qtptyt + 1 − ptct − ptc
∗
t , qtγt + (1 − qt)ptyt = 1,

which we use in place of the traders’ budget constraint (13e) in the previous system (13).
In the non-stochastic steady state, all normalized variables are constant over time, and yt = 1.

Since βα1−σ ∈ (0, 1), the transversality condition (14) is satisfied in the non-stochastic steady
state. After log-linearizing2 the system around the non-stochastic steady state, we obtain

q̂t + i

1 + i
ı̂t ≡ 0, −σĉt = ν̂t + p̂t,

q̂t + γ̂t + ν̂t = Et[ν̂t+1], qb[q̂t + b̂t] + pc[p̂t + ĉt] = aât,

qγ[q̂t + γ̂t] + (1 − q)py

[
− q

1 − q
q̂t + p̂t + ŷt

]
= 0, p̂t + ĉ∗

t = â∗
t ,

γ̂t + â∗
t+1 = p̂t + ŷt , b̂t = d̂t , cĉt + c∗ĉ∗

t = yŷt, aât + a∗â∗
t = 0,

(16)

where the variables without the time subscript are the non-stochastic steady state values, while
the variables with the hat are the percentage deviations from the steady state values.

The system (16) together with the law of motion (2) for the exogenous state can be reduced
to a four equation system in the two exogenous variables ŷt and ı̂t , the endogenous state variable
â∗
t , and the control variable ν̂t . With standard methods, we derive the linear system describing the

equilibrium evolution of the three state variables ŷt , ı̂t , and â∗
t , and linking all the other variables

to the three state variables.3 Then, we derive the percentage deviation Q̂t of the price of a one-
period financial asset as a function of the percentage deviation 	̂t+1 of its nominal payoff and
the percentage deviation Q̂∗

t of the real price of a one-period financial asset as a function of the
percentage deviation 	̂∗

t+1 of its real payoff from

γ̂t + ν̂t + Q̂t = Et[ν̂t+1 + 	̂t+1], ν̂t + Q̂∗
t + p̂t = Et[ν̂t+1 + 	̂∗

t+1 + p̂t+1]. (17)

Multi-period financial assets are priced recursively.
To gain further insight, after using −σĉt = ν̂t + p̂t from the previous system (16), the last

equation can be written as

Q̂∗
t = Et[−σ(ĉt+1 − ĉt) + 	̂∗

t+1], (18)

2 We have solved the model with the alternative methodology described in Occhino (2004). The methodology consists
in defining the recursive competitive equilibrium as functions solving a system of equations, devising an operator whose
fixed point is an equilibrium, and iterating on the operator until convergence. The advantage of this approach is that it
avoids linearizing the model. The disadvantage is that it requires keeping the number of state variables as low as possible,
and it can be used only for the case N = 1. Although the two methodologies are very different, they yield similar results
in the N = 1case.

3 The solution method is based on the eigenvalue decomposition of the matrix describing the evolution of the state
and control variables. Very small imaginary parts of the solution are dropped. As a check, the model has been solved
using MATLAB files written by Chris Sims and Paul Klein available at http://www.ssc.uwo.ca/economics/faculty/klein/.
Their solution method is based on the Schur decomposition of the matrix describing the evolution of the state and control
variables. The two methods yield identical solutions.
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which is a familiar asset pricing equation relating the real price of a one-period financial asset to
its real payoff and to the intertemporal marginal rate of substitution of the subset of households
which participate in financial markets. In the specific case of a one-period real bond, the real
payoff is constant, so 	̂∗

t+1 = 0, and the percentage deviation of its real price Q̂∗
t is equal to

minus the expectation of the relative risk aversion σ times the percentage deviation of the traders’
consumption growth rate. Equivalently,

r̂t = σEt[ĉt+1 − ĉt], (19)

the deviation r̂t of the real interest rate from its steady state value is equal to the relative risk
aversion σ times the expected percentage deviation of the consumption growth rate of the subset
of households which participate in financial markets.

The linearized model implies a term structure affine in the three state variables, ŷt and ı̂t , and
â∗
t . Relative to other term structure models, our approach allows for interactions between output

and the interest rate. The general equilibrium model also imposes structural restrictions on the
evolution of the state and its relation to bond prices, which allows us to evaluate structural changes
in market participation.

3.2. Calibration

The key parameters in the model are the traders’ share of the aggregate endowment λ and
the relative risk aversion σ. λ is a measure of the traders’ economic weight. For instance, in the
case that all households receive the same endowment, λ is the percentage of traders, that is the
ratio ω/(ω + ω∗) of the number of traders to the total number of households. When λ is equal
to 1, the economy is the benchmark full participation, representative agent, endowment economy
with cash-in-advance constraints. The lower λ, the greater is the degree of market segmentation.
Below, we show results for values of λ in the range between 0.01 and 1, and for values of σ in the
range between 0.5 and 3. We consider λ = 0.1 and σ = 2 as benchmark values4 for the segmented
markets model.

To calibrate the other parameters, we use monthly data for the period 1970:01–1999:12 from
the Center for Research in Security Prices (CRSP) and from the FRED II Database of the Federal
Reserve Bank of St. Louis.

Each period is 1 month. The aggregate endowment growth rate α − 1 in the non-stochastic
steady state is set equal to 0.0025, to match the 3.02% average yearly growth rate of real
personal consumption expenditure (non-durable goods and services). The inverse of the gross
real interest rate βu′(α) in the non-stochastic steady state is set equal to 0.9939 to match
the 7.34% average yearly real rate of return on the value-weighted total stock market index.
The value of the preferences discount factor β, then, varies with the relative risk aversion
σ.

To obtain the law of motion (2) for the exogenous state ẑt , we run a VAR with N lags of
the linearly detrended logarithm of real personal consumption expenditure and the logarithm of
the effective federal funds rate. We set N = 12 on the basis of the Akaike Information Criterion
(AIC), but we found the results were not very sensitive to this choice.

4 In related work, Landon-Lane and Occhino (2004) estimate a segmented markets model with data on the money
growth rate and the inflation rate, and obtain a maximum likelihood estimate of λ at 0.13.
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4. Results

We now compare the predictions of the full participation model (λ = 1) and the seg-
mented markets model (λ ∈ (0, 1)) on bond real returns dynamics with data. Bond real returns
are real holding period returns of Treasury bonds with constant maturities. For ease of
interpretation, we express rates in annual percentage points, and we multiply logarithms by
100.

4.1. Impulse response analysis

We begin with an impulse response analysis emphasizing the liquidity effect of monetary
policy on bond real returns. We make the standard structural assumption that a monetary
policy shock does not affect the aggregate endowment contemporaneously. We then esti-
mate a tri-variate VAR system5 with 12 lags, consisting of the detrended log consumption,
the log federal funds rate, and the bond real return. We decompose the covariance matrix
of the innovations using the Cholesky factorization, and we identify a contractionary mon-
etary policy shock as a positive shock to the federal funds rate equation. Fig. 1 shows the
impulse responses over a 24-month period to a 100 basis point increase in the federal funds
rate.

The figure shows that, in the impact period of a contractionary monetary policy shock, bond
returns decrease for maturities of 3 months and higher. The 3-month bond return falls by −0.33%,
the 1-year by −1.70%, and the 2-year by −2.61%. Returns stay negative for a few periods and
then become positive for most of the following periods until the shock dissipates near the end of
the 24-month horizon analyzed.

The full participation model mis-characterizes the bond return responses. 3-month, 1-year and
2-year bond returns rise in the impact period of a contractionary shock, and are negative for most
of the following periods.

In the full participation model, all households are traders, and the stochastic dis-
count factor is a function of aggregate consumption. The dashed line in Fig. 2 plots the
response of aggregate consumption to the contractionary monetary policy shock. Notice
that the response of the aggregate consumption growth rate is negative during most of
the periods following the shock.6 As a result, the response of the real interest rate,
expressed in (19), and the responses of bonds expected real returns are negative as
well.

The segmented markets model, however, correctly predicts the sign of the bond returns,
although it tends to overstate the impact effect of the shock. The 3-month bond return falls
by −1.08% in the impact period, the 1-year and 2-year bond returns fall by −3.91% and −5.18%.
After the first period, bond returns become quickly positive, and match closely their empirical
counterparts.

With segmented markets, the stochastic discount factor is determined by the intertemporal
marginal rate of substitution of the subset of households participating in financial markets. As

5 The R2’s for consumption, federal funds, and real returns are 0.9530, 0.9747, and 0.3127, respectively. The lags are
collectively significant at the 95% level except for the bond returns in the consumption equation, and consumption in the
federal funds equation.

6 Christiano, Eichenbaum, and Evans (1999) document that the response of the aggregate production growth rate is
negative for about six quarters after a contractionary monetary policy shock.
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Fig. 1. Impulse response of bond returns to monetary shock. Notes: the figure plots the impulse response of bond returns to a change in the federal funds rate in the data, in the
full participation (λ = 1 and σ = 2) and segmented markets model (λ = 0.1 and σ = 2).
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Fig. 2. Impulse response of consumption to monetary shock. Notes: the figure plots the impulse response of the traders’
consumption to a change in the federal funds rate in the full participation (λ = 1 and σ = 2) and segmented markets
model (λ = 0.1 and σ = 2).

pointed out by Grossman and Weiss (1983), Lucas (1990), Alvarez and Atkeson (1996) and
Occhino (2004) in different limited participation models, a contractionary monetary policy shock
decreases the participants’ cash balances and consumption expenditures, increases their expected
consumption growth rate, and as shown in (19), increases the real interest rate and expected real
returns. The response of the traders’ consumption in the segmented markets model is shown
by the dotted line in Fig. 2. Since the response of the traders’ consumption g rowth rate is
positive during all the periods following the shock, the segmented markets model matches the
positive returns in the data that follow the impact period of a contractionary monetary policy
shock.

To make a formal comparison between the full participation and the segmented markets mod-
els, we follow the design suggested by Canova (2001). We compute [16%, 84%] confidence
bands for the empirical impulse responses using the Sims and Zha (1999) procedure. We then
count the number of periods when the model impulse response is consistent with its empirical
counterpart.

The best fit for the segmented markets model is the 2-year bond return, for which the model
response falls into the 68% confidence bands 15 periods out of 24. At that horizon, the full
participation model response falls within the bands only 8 times. The comparison favors the seg-
mented markets model for all four maturities. For the 1-month bond return, the count is 10 for
segmented markets, and only 3 for full participation. At 3-month, the counts are 6 versus 1, and
at 1-year, the counts are 9 versus 2. Summing over these four securities, the impulse responses
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Table 1
Impact of market segmentation and risk aversion on autocorrelations

λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 Data

σ = 3
1-Month 0.0297 0.7256 0.7371 0.6298 0.4434 0.4850
2-Month −0.2809 0.4408 0.6022 0.4500 0.1546 0.4838
3-Month −0.2099 0.2019 0.5199 0.4946 0.2419 0.4802
4-Month −0.1533 0.1015 0.3977 0.4569 0.2802 0.4726
5-Month −0.1904 0.0659 0.3106 0.3842 0.2247 0.4608
6-Month −0.1582 0.0470 0.2462 0.3333 0.2341 0.4455
7-Month −0.1999 0.0285 0.1833 0.2486 0.1639 0.4272
8-Month −0.1594 0.0260 0.1578 0.2255 0.1789 0.4063
9-Month −0.1006 0.0242 0.1367 0.2037 0.2014 0.3833
10-Month −0.1135 0.0170 0.1127 0.1668 0.1624 0.3589
11-Month 0.0298 0.0116 0.0963 0.1485 0.1893 0.3334
1-Year 0.0331 0.0162 0.0917 0.1427 0.1975 0.3074
2-Year −0.1592 0.0822 0.0680 0.0825 0.1000 0.2470

σ = 2
1-Month 0.0297 0.6279 0.7123 0.6366 0.4507 0.4850
2-Month −0.2809 0.2384 0.5317 0.4530 0.1649 0.4838
3-Month −0.2099 0.0422 0.3945 0.4599 0.2520 0.4802
4-Month −0.1533 −0.0148 0.2683 0.3927 0.2882 0.4726
5-Month −0.1904 −0.0319 0.1923 0.3114 0.2318 0.4608
6-Month −0.1582 −0.0365 0.1448 0.2576 0.2385 0.4455
7-Month −0.1999 −0.0482 0.0997 0.1844 0.1667 0.4272
8-Month −0.1594 −0.0436 0.0852 0.1644 0.1795 0.4063
9-Month −0.1006 −0.0381 0.0744 0.1476 0.1987 0.3833
10-Month −0.1135 −0.0432 0.0590 0.1192 0.1595 0.3589
11-Month 0.0298 −0.0403 0.0521 0.1079 0.1827 0.3334
1-Year 0.0331 −0.0306 0.0518 0.1047 0.1895 0.3074
2-Year −0.1592 0.0315 0.0462 0.0641 0.0948 0.2470

Model
log(y) 0.9719 0.9716
i 0.9871 0.9771
D–M 6.6374

Notes: autocorrelation coefficients of the aggregate endowment, the nominal interest rate and bond real returns in the
model and in the data. λ is the traders’ share of the aggregate endowment, σ is the relative risk aversion. D–M is the
Diebold–Mariano statistic comparing the full participation and the segmented markets models in the benchmark case
σ = 2 and λ = 0.1. The statistic has an asymptotic normal distribution.

fall within the bands 41.7% of the times for the segmented markets model and only 16.7% of the
times for the full participation model. The Diebold–Mariano (1995) statistic7 forthe number of
impulse responses falling within the bands is 4.38 which clearly favors the segmented markets
model.8

7 Let {ei,t}Tt=1 be the impulse response for model i. Let model 1 be the segmented markets model and model 2 be

the full participation model. We test the null that
∑T

t=1L(e1,t) −
∑T

t=1L(e2,t) = 0 using the loss function L(ei,t) =
I(ei,t ∈ [e0.16, e0.84]), where [e0.16, e0.84] is the [16%, 84%] confidence interval of the impulse response band. Diebold

and Mariano (1995) show that d̄/

√
T−2

∑T

t=1(dt − d̄)2 is asymptotically N(0, 1), where dt = L(e1,t) − L(e2,t) and

d̄ = (1/T )
∑T

t=1dt .
8 The Diebold–Mariano statistic, using mean squared errors for the 5-, 10- and 30-year impulse responses, is 2.820,

favoring the leading case of the segmented markets model (λ = 0.1, σ = 2).
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Table 2
Impact of market segmentation and risk aversion on autocorrelations

λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 Data

σ = 1
1-Month 0.0297 0.4549 0.6642 0.6516 0.4724 0.4850
2-Month −0.2809 −0.0501 0.3584 0.4369 0.1956 0.4838
3-Month −0.2099 −0.1508 0.1619 0.3465 0.2802 0.4802
4-Month −0.1533 −0.1624 0.0689 0.2412 0.3087 0.4726
5-Month −0.1904 −0.1660 0.0255 0.1648 0.2492 0.4608
6-Month −0.1582 −0.1609 0.0057 0.1222 0.2471 0.4455
7-Month −0.1999 −0.1692 −0.0148 0.0765 0.1717 0.4272
8-Month −0.1594 −0.1599 −0.0168 0.0656 0.1782 0.4063
9-Month −0.1006 −0.1494 −0.0169 0.0582 0.1890 0.3833
10-Month −0.1135 −0.1554 −0.0232 0.0432 0.1502 0.3589
11-Month 0.0298 −0.1426 −0.0206 0.0412 0.1649 0.3334
1-Year 0.0331 −0.1295 −0.0170 0.0417 0.1684 0.3074
2-Year −0.1592 −0.1050 −0.0122 0.0272 0.0821 0.2470

σ = 0.5
1-Month 0.0297 0.2965 0.5852 0.6507 0.5082 0.4850
2-Month −0.2809 −0.2373 0.1326 0.3457 0.2462 0.4838
3-Month −0.2099 −0.2729 −0.0353 0.1697 0.3204 0.4802
4-Month −0.1533 −0.2695 −0.0798 0.0757 0.3292 0.4726
5-Month −0.1904 −0.2720 −0.0971 0.0273 0.2618 0.4608
6-Month −0.1582 −0.2653 −0.1013 0.0058 0.2435 0.4455
7-Month −0.1999 −0.2740 −0.1097 −0.0161 0.1660 0.4272
8-Month −0.1594 −0.2636 −0.1067 −0.0185 0.1633 0.4063
9-Month −0.1006 −0.2529 −0.1029 −0.0188 0.1636 0.3833
10-Month −0.1135 −0.2610 −0.1063 −0.0254 0.1282 0.3589
11-Month 0.0298 −0.2430 −0.0998 −0.0221 0.1339 0.3334
1-Year 0.0331 −0.2321 −0.0959 −0.0197 0.1342 0.3074
2-Year −0.1592 −0.2322 −0.0964 −0.0228 0.0643 0.2470

Model
log(y) 0.9719 0.9716
i 0.9871 0.9771

Notes: autocorrelation coefficients of the aggregate endowment, the nominal interest rate and bond real returns in the
model and in the data. λ is the traders’ share of the aggregate endowment, σ is the relative risk aversion.

4.2. Bond return autocorrelations

We now consider the autocorrelation structure of short-term bond real returns. Tables 1 and 2
display the first-order autocorrelation coefficients of the aggregate endowment, the nominal inter-
est rate, and bond real returns with maturities 1–24 months in the model and in the data, for several
values of the traders’ share λ of the aggregate endowment and relative risk aversion σ.

The autocorrelations of the logarithm of the aggregate endowment and the nominal interest
rate approximately match the autocorrelations of the linearly detrended log consumption and the
federal funds rate.

Bond returns data reveal a smooth decline of the first-order autocorrelation as a function of
maturity. The 1-month autocorrelation is 0.48. At 1-year, the autocorrelation has fallen to 0.31;
by 2-year, the autocorrelation is 0.25.

The full participation model is far from replicating these moments. There is a short-run pos-
itive autocorrelation of 0.03 at the 1-month horizon, but it is much smaller than in the data.
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Table 3
Impact of market segmentation and risk aversion on volatilities

λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 Data

σ = 3
1-Month 6.4168 5.3974 4.1326 3.4020 2.8154 3.6679
2-Month 7.6663 5.9082 4.3074 3.6148 3.1624 3.9051
3-Month 7.0517 7.2337 4.6186 3.6135 3.0055 4.1642
4-Month 7.0226 8.5698 5.2559 3.8686 3.0005 4.4809
5-Month 7.4876 9.3295 5.8439 4.1834 3.1505 4.8545
6-Month 7.6704 10.0353 6.5598 4.5934 3.2381 5.2278
7-Month 7.6219 10.5914 7.3787 5.2223 3.6332 5.7439
8-Month 7.8148 10.9524 8.0249 5.6529 3.7316 6.2455
9-Month 7.8900 11.4091 8.7610 6.1868 3.8704 6.7755
10-Month 7.5804 11.7927 9.5251 6.8527 4.3019 7.3269
11-Month 7.5991 12.7189 10.5958 7.7164 4.6392 7.8926
1-Year 8.2558 12.9822 11.1212 8.1345 4.7580 8.4653
2-Year 10.2395 10.7096 13.8110 12.2110 8.0916 13.0127

σ = 2
1-Month 4.2778 4.6673 3.9877 3.4189 2.8293 3.6679
2-Month 5.1109 5.3514 4.2217 3.6364 3.1714 3.9051
3-Month 4.7011 6.7076 4.7261 3.7255 3.0192 4.1642
4-Month 4.6817 7.8242 5.5369 4.0986 3.0233 4.4809
5-Month 4.9918 8.3238 6.2417 4.5188 3.1810 4.8545
6-Month 5.1136 8.7330 7.0202 5.0334 3.2834 5.2278
7-Month 5.0813 9.0669 7.8790 5.7584 3.6962 5.7439
8-Month 5.2099 9.1783 8.4936 6.2522 3.8112 6.2455
9-Month 5.2600 9.3855 9.1579 6.8302 3.9704 6.7755
10-Month 5.0536 9.5990 9.8528 7.5339 4.4202 7.3269
11-Month 5.0661 10.2226 10.7702 8.3940 4.7822 7.8926
1-Year 5.5039 10.2441 11.1355 8.7922 4.9147 8.4653
2-Year 6.8263 8.1288 12.3435 12.2838 8.3553 13.0127

Model
log(y) 1.5460 1.5307
i 2.7392 3.2341
D–M 3.0163

Notes: standard deviations of the aggregate endowment, the nominal interest rate and bond real returns in the model and in
the data. λ is the traders’ share of the aggregate endowment, σ is the relative risk aversion. D–M is the Diebold–Mariano
statistic comparing the full participation and the segmented markets models in the benchmark case σ = 2 and λ = 0.1.
The statistic has an asymptotic normal distribution.

The autocorrelations then turn negative until the 11-month returns. Here again, the bond return
autocorrelations are simply inheriting through the stochastic discount factor the behavior of the
aggregate consumption growth rate.

The segmented markets model, however, correctly predicts the sign of the autocorrela-
tions, and their decline with maturity, although the predicted decline is faster than in the
data. For our benchmark case of σ = 2 and λ = 0.1, the 1-month autocorrelation is 0.64
compared with 0.48, while the 1-year autocorrelation is 0.10 compared with 0.31. Except
for the 1-month maturity, the model autocorrelations are lower than in the data. Nonetheless,
the Diebold–Mariano statistic, comparing the root mean squared errors of the full participa-
tion and the segmented markets models, is 6.64, strongly favoring the assumption of market
segmentation.
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Table 4
Impact of market segmentation and risk aversion on volatilities

λ = 1 λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 Data

σ = 1
1-Month 2.1389 3.6948 3.8601 3.4964 2.8730 3.6679
2-Month 2.5554 4.5692 4.2797 3.7567 3.2019 3.9051
3-Month 2.3506 5.6629 5.1962 4.1210 3.0658 4.1642
4-Month 2.3409 6.2596 6.2420 4.7848 3.0996 4.4809
5-Month 2.4959 6.3640 7.0256 5.4281 3.2832 4.8545
6-Month 2.5568 6.4326 7.7576 6.1255 3.4311 5.2778
7-Month 2.5406 6.5531 8.5069 6.9800 3.8950 5.7439
8-Month 2.6049 6.4756 8.9198 7.5337 4.0587 6.2455
9-Month 2.6300 6.5011 9.3335 8.1236 4.2753 6.7755
10-Month 2.5268 6.6077 9.7868 8.8116 4.7743 7.3269
11-Month 2.5330 6.9178 10.3463 9.5754 5.2009 7.8926
1-Year 2.7519 6.7769 10.3929 9.8577 5.3697 8.4653
2-Year 3.4132 5.5916 9.9322 11.7073 9.0569 13.0127

σ = 0.5
1-Month 1.0695 2.7318 3.7236 3.6140 2.9509 3.6779
2-Month 1.2777 3.5553 4.4106 4.0115 3.2594 3.9051
3-Month 1.1753 4.1894 5.6016 4.7947 3.1629 4.1642
4-Month 1.1704 4.3853 6.5848 5.7526 3.2638 4.4809
5-Month 1.2479 4.3286 7.1597 6.5376 3.5075 4.8545
6-Month 1.2784 4.3063 7.6056 7.2779 3.7470 5.2778
7-Month 1.2703 4.3716 8.0433 8.0799 4.3035 5.7439
8-Month 1.3025 4.2846 8.1553 8.5189 4.5553 6.2455
9-Month 1.3150 4.2827 8.2862 8.9494 4.8682 6.7755
10-Month 1.2634 4.3572 8.4893 9.4477 5.4441 7.3269
11-Month 1.2665 4.5041 8.7435 9.9573 5.9663 7.8926
1-Year 1.3760 4.3625 8.5915 10.0058 6.1893 8.4653
2-Year 1.7066 3.8243 7.9445 10.1933 10.1097 13.0127

Model
log(y) 1.5460 1.5307
i 2.7392 3.2341

Notes: standard deviations of the aggregate endowment, the nominal interest rate and bond real returns in the model and
in the data. λ is the traders’ share of the aggregate endowment, σ is the relative risk aversion.

4.3. Bond market volatility

We now turn to the contribution of the liquidity effect of monetary policy to the volatility
structure of bond real returns. Tables 3 and 4 display the standard deviations of the aggregate
endowment, the nominal interest rate and bond real returns in the model and in the data, for
several values of λ and σ.

The most striking feature of the data is that the volatility of bond real returns is a steeply
increasing function of maturity. The 1-month standard deviation is 3.67, the 1-year and 2-year
are 8.47 and 13.01, respectively.

The full participation model (λ = 1) is not able to replicate the volatility of bond returns. At the
benchmark relative risk aversion σ = 2, it significantly under-predicts bond returns volatilities for
maturities of 1-year and higher. When the relative risk aversion is higher, all volatilities increase,
so the full participation model over-predicts bond return volatilities for short maturities. For
instance, when σ = 3, the full participation model approximately matches the 1-year volatility,
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Fig. 3. Autocorrelations and term structure of volatility. Notes: the figure plots the autocorrelations and term structure of
real bond volatility in the data, in the full participation (λ = 1 and σ = 2) and segmented markets model (λ = 0.1 and
σ = 2).

still under-predicts the 2-year volatility, and significantly over-predicts the volatility for maturities
up to 6 months.

The segmented markets model accounts for the contribution of monetary policy to bond returns
volatility. The model with λ = 0.1 and σ = 2, shown in Fig. 3, does an excellent job in predicting
the volatility of bond returns as function of maturity.
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The Diebold–Mariano statistic for a root mean squared error loss function is 3.02 which favors
the segmented markets model over the full participation model at the 99% confidence level.

The predicted bond return volatility in the segmented markets case derives from two sources.
The first is the aggregate endowment volatility, which is common to full participation models. The
second is the volatility of the monetary policy variable, namely the nominal interest rate. The higher
the relative risk aversion, the more effective the first source. The higher market segmentation (the
lower λ), the more effective the second source. Both increasing the risk aversion and increasing
market segmentation increase bond returns volatility.

The model cannot replicate bond returns volatilities further along the yield curve.9 To
fully explain the volatility of assets with longer maturities, we would need to introduce more
persistent shocks. Bansal and Yaron (2004), for instance, introduce an additional stochas-
tic component of the aggregate endowment growth rate with small volatility and large
persistence.

5. Conclusion

In a segmented markets model, we have been able to account for the contribution of monetary
policy to bond real returns. Data on Treasury bond returns strongly favor the segmented markets
model over the full participation model. For maturities up to 2 years, the segmented markets model
is able to replicate the sign and the size of the impulse response of bond returns to monetary policy
shocks, it correctly predicts the sign of their autocorrelation, and it closely matches their volatility
along the yield curve.

In future work, we plan to study the effect of endogenizing production. With real sector shocks,
we hope to explain the impact of segmented markets on long term bonds and equities.
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